Submodular Function Minimization and Maximization in Discrete Convex Analysis

نویسندگان

  • Kazuo Murota
  • Frank
  • S. Fujishige
چکیده

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identified as a computationally tractable subclass for maximization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mirror-Descent-like Algorithms for Submodular Optimization

In this paper we develop a framework of submodular optimization algorithms in line with the mirror-descent style of algorithms for convex optimization. We use the fact that a submodular function has both a subdifferential and a superdifferential, which enables us to formulate algorithms for both submodular minimization and maximization. This reveals a unifying framework for a number of submodul...

متن کامل

Polyhedral aspects of Submodularity, Convexity and Concavity

The seminal work by Edmonds [9] and Lovász [39] shows the strong connection between submodular functions and convex functions. Submodular functions have tight modular lower bounds, and a subdifferential structure [16] in a manner akin to convex functions. They also admit polynomial time algorithms for minimization and satisfy the Fenchel duality theorem [18] and the Discrete Seperation Theorem ...

متن کامل

On the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis

We consider the problem of maximizing a nondecreasing submodular set function under a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework for the approximation of this problem, which is based on the pipage rounding technique by Ageev and Sviridenko (2004), and showed that this framework indeed yields a (1 − 1/e)-approximation algorithm for the class of submodular...

متن کامل

Greedy Maximization of Submodular Functions

Traditional optimization techniques often rely upon functions that are convex or at least locally convex. Such diverse methods as gradient descent, loopy belief propagation, and linear programming all rely upon convex functions. However, many natural functions are not convex, yet optimizing over them is both possible and necessary. The class of submodular functions is particularly well-behaved ...

متن کامل

Submodular Functions: Optimization and Approximation

Submodular functions are discrete analogue of convex functions, arising in various fields of applied mathematics including game theory, information theory, and queueing theory. This survey aims at providing an overview on fundamental properties of submodular functions and recent algorithmic developments of their optimization and approximation. For submodular function minimization, the ellipsoid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010